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Abstract. We consider the basic problem of approximating Nash equilibria in noncooperative
games. For monotone games, we design continuous time flows which converge in an averaged sense
to Nash equilibria. We also study mean field equilibria, which arise in the large player limit of
symmetric noncooperative games. In this setting, we will additionally show that the approximation
of mean field equilibria is possible under a suitable monotonicity hypothesis.
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1. Introduction. We begin by recalling a noncooperative game in which players
labeled j = 1, . . . ,N each have finitely many choices. For definiteness, let us suppose
that each player selects an action among the first m natural numbers and that each
player is unaware of the others' selections. If player i selects si \in \{ 1, . . . ,m\} for
i= 1, . . . ,N , player j's cost is a number

fj(s1, . . . , sN ).

Each player seeks to have as small a cost as possible. However, each player's cost
depends on the other players' actions.

This type of game leads naturally to the notion of a Nash equilibrium. This is an
N -tuple s= (s1, . . . , sN ) for which

fj(s)\leq fj(tj , s - j)

for all tj = 1, . . . ,m and j = 1, . . . ,N . Here we have written

(tj , s - j) = (s1, . . . , sj - 1, tj , sj+1, . . . , sN ).

Note in particular that no player can pay a smaller cost by making a unilateral change.
Simple examples can be found in which Nash equilibria do not exist. However, Nash
showed such equilibria exist if mixed strategies are allowed [35, 36].

For any m\in \BbbN , we will denote the standard m-simplex as

\Delta m =

\left\{   z \in \BbbR m : zj \geq 0,

m\sum 
j=1

zj = 1

\right\}   .

A mixed strategy for player i is an element xi = (xi,1, . . . , xi,m) \in \Delta m, which corre-
sponds to player i choosing action j \in \{ 1, . . . ,m\} with probability xi,j . If player i
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EVOLUTION OF MIXED STRATEGIES IN MONOTONE GAMES 2751

selects the mixed strategy xi \in \Delta m for each i = 1, . . . ,N , player j's expected cost is
defined to be

(1.1) Fj(x1, . . . , xN ) =

m\sum 
s1=1

\cdot \cdot \cdot 
m\sum 

sN=1

fj(s)x1,s1 \cdot \cdot \cdot xN,sN .

We'll also say xi \in \Delta m is a pure strategy if one of the entries of xi is equal to 1.
We can extend the definition of Nash equilibria given above to incorporate mixed

strategies as follows. A Nash equilibrium is an N -tuple x= (x1, . . . , xN ) for which

Fj(x)\leq Fj(yj , x - j)

for each yj \in \Delta m and j = 1, . . . ,N . Here (yj , x - j) is defined analogously to (tj , s - j)
above. As with Nash equilibria for pure strategies, no player can improve her expected
cost by deviating from her current choice. In this note, we will discuss the possibility
of approximating Nash equilibrium for this type and more general types of games.

1.1. Previous work. The existence of a Nash equilibrium for the game dis-
cussed above follows from an application of Brouwer's fixed point theorem. Since
proofs of Brouwer's fixed point theorem are nonconstructive, it seems unlikely that
there would be an easy way to approximate Nash equilibria in general. This problem
has been examined at length, and its complexity has been categorized as being equiv-
alent to finding a fixed point in the conclusion of Brouwer's theorem [11, 14, 15]. In
particular, there is no known efficient algorithm for approximating Nash equilibria.

Nevertheless, there is one class of games in which approximation is at least theo-
retically feasible. These games are called monotone. In the context described above,
their expected cost functions F1, . . . , FN satisfy

(1.2)

N\sum 
j=1

(Fj(x) + Fj(y))\geq 
N\sum 
j=1

(Fj(xj , y - j) + Fj(yj , x - j))

for x, y \in \Delta N
m. For example, any two-player zero-sum game satisfies this monotonicity

condition (see Corollary 3.4 below). This condition additionally extends more gener-
ally to cost functions F1, . . . , FN which are not necessarily of the form (1.1), and it is
inspired by a uniqueness criterion discovered by Lasry and Lions when they initiated
the study of mean field games [32]. We also note that there have been several recent
studies on monotone games [3, 9, 19, 20, 26, 34, 38, 39, 40, 41, 42, 43].

In prior joint work [1], we argued that if the game is monotone, then for any
x0 \in \Delta N

m, there is a unique absolutely continuous path u : [0,\infty )\rightarrow \Delta N
m such that

(1.3)

\Biggl\{ 
\.uj(t) + \partial xj

Fj(u(t))\ni 0,

uj(0) = x0
j

for almost every t\geq 0 and each j = 1, . . . ,N . Here

(1.4) \partial xj
Fj(x) =

\Bigl\{ 
z \in \BbbR m : Fj(yj , x - j)\geq Fj(x) + z \cdot (yj  - xj) for yj \in \Delta m

\Bigr\} 
,

and the dot ``\cdot "" denotes the standard dot product on \BbbR m. In particular, the evolution
equation in (1.3) is equivalent to

(1.5) Fj(yj , u - j(t))\geq Fj(u(t)) - \.uj(t) \cdot (yj  - uj(t))

holding for all y \in \Delta m and almost every t\geq 0.
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2752 RYAN HYND

We also considered the Ces\`aro mean of u,

1

t

\int t

0

u(s)ds.

Let us suppose for the moment that this mean converges to x as t\rightarrow \infty . In view of
(1.2) and (1.3),

N\sum 
i=1

(Fi(z) - Fi(ui(s), z - i))\geq 
N\sum 
i=1

(Fi(zi, u - i(s)) - Fi(u(s)))

\geq  - 
N\sum 
i=1

\.ui(s) \cdot (zi  - ui(s))

=
d

ds

N\sum 
i=1

1

2
| ui(s) - zi| 2

for z \in \Delta N
m. Integrating from s= 0 to s= t and dividing by t gives

N\sum 
i=1

\biggl( 
Fi(z) - Fi

\biggl( 
1

t

\int t

0

ui(s)ds, z - i

\biggr) \biggr) 
=

N\sum 
i=1

\biggl( 
Fi(z) - 

1

t

\int t

0

Fi (ui(s), z - i)ds

\biggr) 

=

N\sum 
i=1

1

t

\int t

0

(Fi(z) - Fi (ui(s), z - i))ds

\geq 
N\sum 
i=1

1

2t

\bigl( 
| ui(t) - zi| 2  - | u0

i  - zi| 2
\bigr) 
.

Here we used that each Fi is multilinear; recall the definition (1.1).
As u(t)\in \Delta N

m is bounded, we can send t\rightarrow \infty to find

N\sum 
i=1

(Fi(z) - Fi (xi, z - i))\geq 0.

Choosing z = (yj , x - j) for yj \in \Delta m would then lead to

Fj(yj , x - j) - Fj(x)\geq 0.

That is, x is a Nash equilibrium. Of course it remains to be shown that the Ces\`aro
mean of u converges. This follows from a theorem due to Baillon and Br\'ezis [2]. The
goal of this study is to identify a general setting in game theory for which we can
apply this result.

1.2. A general setting. In what follows, we will study a general version of the
noncooperative game detailed above. To this end, we will consider a separable Banach
space X with continuous dual space X\ast and write

\mu (x) = \langle \mu ,x\rangle 

for \mu \in X\ast and x \in X. Let us suppose K1, . . . ,KN \subset X\ast are each nonempty, convex,
and weak* compact, and set

K =K1 \times \cdot \cdot \cdot \times KN .
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EVOLUTION OF MIXED STRATEGIES IN MONOTONE GAMES 2753

We will study collections of N functions F1, . . . ,FN : K \rightarrow \BbbR which are weak*
continuous and satisfy

(1.6) Kj \ni \nu j \mapsto \rightarrow Fj(\nu j , \mu  - j) convex

for each \mu \in K and j = 1, . . . ,N . We'll say \mu \in K is a Nash equilibrium of F1, . . . , FN

provided that

Fj(\mu )\leq Fj(\nu j , \mu  - j) for all \nu j \in Kj and j = 1, . . . ,N .

Later in this note, we will briefly recall how to justify the existence of a Nash equi-
librium.

The prototypical scenario of interest is when X = C(S) for a compact metric
space S and

K1 = \cdot \cdot \cdot =KN =\scrP (S).

Here \scrP (S) is the collection of Borel probability measures on S. We recall that X\ast is
isometrically isomorphic to M(S), the collection of Radon measures on S equipped
with the total variation norm. Moreover, \scrP (S)\subset M(S) is convex and weak* compact.
Note that if fj : S

N \rightarrow \BbbR is continuous, then

(1.7) Fj(\mu ) =

\int 
SN

fj(s)d\mu 1(s1) \cdot \cdot \cdot d\mu N (sN )

is weak* continuous on \scrP (S)N for j = 1, . . . ,N . Moreover, Fj clearly satisfies (1.6).
These objects relate to game theory as follows. The set S represents an action

space for players 1, . . . ,N in a noncooperative game. An element \mu j \in \scrP (S) constitutes
a mixed strategy for player j; that is, player j chooses from a given collection of
actions A\subset S with probability \mu j(A). Of course, \mu j = \delta sj is a pure strategy: player j
always selects action sj \in S. The value fj(s) represents player j's cost if the players
collectively opt for action s = (s1, . . . , sN ) \in SN . And Fj(\mu ) indicates player j's
expected cost if players 1, . . . ,N respectively select the mixed strategies \mu 1, . . . , \mu N .
Note than when S is finite, this example corresponds to the N -player noncooperative
game considered at the beginning of this note.

Let us return to the general setting involving the separable Banach space X. In
analogy with (1.4), we define

\partial \mu j
Fj(\mu ) =

\Bigl\{ 
x\in X : Fj(\nu j , \mu  - j)\geq Fj(\mu ) + \langle \nu j  - \mu j , x\rangle for \nu j \in Kj

\Bigr\} 
for \mu \in K. Note that \partial \mu jFj(\mu ) is not a subdifferential in the traditional sense as the
inequality in the definition is only required to hold for \nu j \in Kj rather than for all
\nu j \in X\ast . Nevertheless, these subdifferentials are suitable for our purposes.

Observe that if there happens to be \delta Fj(\mu )/\delta \mu j \in X such that

(1.8) lim
t\rightarrow 0+

Fj(\mu j + t(\nu j  - \mu j), \mu  - j) - Fj(\mu )

t
=

\biggl\langle 
\nu j  - \mu j ,

\delta Fj(\mu )

\delta \mu j

\biggr\rangle 
for each \nu j \in Kj , then

\delta Fj(\mu )

\delta \mu j
\in \partial \mu j

Fj(\mu ).
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2754 RYAN HYND

This is due to our convexity hypothesis (1.6). In the case X =C(\BbbT d) and Kj =\scrP (\BbbT d),
a notion of differentiability based on the limit (1.8) has been used with success to study
master equations in mean field games (see Chapter 2 of [8] for a detailed discussion).

It is plain to see that \mu \in K is a Nash equilibrium if and only if

0\in \partial \mu j
Fj(\mu ) for all j = 1, . . . ,N .

In addition, we'll say that F1, . . . , FN is monotone provided

(1.9)

N\sum 
j=1

\langle \mu j  - \nu j , xj  - yj\rangle \geq 0

whenever xj \in \partial \mu j
Fj(\mu ) and yj \in \partial \mu j

Fj(\nu ) for j = 1, . . . ,N . We will also see in
Proposition 3.3 that the aforementioned type of monotonicity (1.2) is a special case
of the notion just introduced.

1.3. Approximation result. We aim to use a flow along the lines of (1.3) to
approximate Nash equilibria for F1, . . . ,FN in the general setting outlined above. An
important detail in (1.3) that we made use of is the natural embedding

\Delta m \subset \BbbR m.

Here \BbbR m is a Hilbert space with the usual dot product. With this goal in mind, we
will employ

a centered, nondegenerate Gaussian measure \eta on X.

Recall that this means \eta is a Borel probability measure on X such that the push
forward of \eta by any nonzero element of X\ast is a centered, nondegenerate Gaussian
measure on \BbbR . It turns out that X\ast \subset L2(X,\eta ), and we will see that the Hilbert
space

H = the closure of X\ast in L2(X,\eta )

will play the role of \BbbR m with the dot product for the flow we present below.
Building on our experience with (1.5), we will consider a path \xi : [0,\infty ) \rightarrow HN

that fulfills

(1.10) Fj(\nu j , \xi  - j(t))\geq Fj(\xi (t)) - (\nu j  - \xi j(t), \.\xi j(t))

for each \nu j \in Kj , almost every t \geq 0, and j = 1, . . . ,N . Here (\cdot , \cdot ) is the L2(X,\eta )
inner product. In Proposition 2.2 below, we will recall a continuous linear mapping
\scrJ :H \rightarrow X which satisfies

(\mu , \zeta ) = \langle \mu ,\scrJ \zeta \rangle for \mu \in X\ast and \zeta \in H.

As a result, (1.10) may be expressed as

(1.11) \scrJ \.\xi j(t) + \partial \mu j
Fj(\xi (t))\ni 0

for almost every t\geq 0 and each j = 1, . . . ,N .
In the following theorem, we will show that for a given initial condition \xi (0) = \mu 0,

the initial value problem associated with (1.11) is well-posed and the Ces\`aro mean of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EVOLUTION OF MIXED STRATEGIES IN MONOTONE GAMES 2755

\xi converges to a Nash equilibrium of F1, . . . , FN . The crucial hypothesis is that \mu 0

belongs to the set

(1.12) \scrD =
\bigl\{ 
\mu \in K : there is \sigma \in HN such that \scrJ \sigma j \in \partial \mu jFj(\mu ) for j = 1, . . . ,N

\bigr\} 
.

Theorem 1.1. Suppose F1, . . . , FN satisfies (1.6) and (1.9) and that \mu 0 \in \scrD .
There is a unique Lipschitz continuous \xi : [0,\infty )\rightarrow HN with \xi (t) \in \scrD for each t \geq 0
and \Biggl\{ 

\scrJ \.\xi j(t) + \partial \mu jFj(\xi (t))\ni 0 a.e. t\geq 0,

\xi j(0) = \mu 0
j

for each j = 1, . . . ,N . Moreover,

1

t

\int t

0

\xi (s)ds

converges weak* to a Nash equilibrium of F1, . . . ,FN as t\rightarrow \infty .

We will also present a related approximation theorem for symmetric games. A
prototypical example occurs when F1, . . . , FN is defined via (1.7) with

fi(s) = f

\left(  si,
1

N  - 1

\sum 
j \not =i

\delta sj

\right)  
for i= 1, . . . ,N and some continuous f : S\times \scrP (S)\rightarrow \BbbR . It turns out that F1, . . . , FN has
a symmetric Nash equilibrium (\mu N , . . . , \mu N ) \in \scrP (S)N . Furthermore, when N \rightarrow \infty ,
(\mu N )N\in \BbbN has a subsequence which converges weak* to some \mu that satisfies\int 

S

f(s,\mu )d\mu (s)\leq 
\int 
S

f(s,\mu )d\nu (s)

for each \nu \in \scrP (S) (as explained in Chapter 4 of [31]). Such a \mu is called a mean field
equilibrium. Finding mean field equilibria is a basic problem in the theory of mean
field games [8, 10, 22, 31], and we will informally refer to this example as a static
mean field game. In Theorem 4.4 below, we will employ a simpler version of the flow
described in Theorem 1.1 to approximate symmetric and mean field equilibria.

Most approximation results for Nash equilibria which require some form of mono-
tonicity, such as the ones verified in [5, 7, 12, 13, 24, 30, 37, 45], involve discrete
time flows. The first study that used a continuous time flow to approximate Nash
equilibria in monotone games set in finite dimensions was initiated by Fl\r am [18]. In
our prior work [1], we extended Fl\r am's work to Hilbert spaces and highlighted the
role of the Ces\`aro mean. The contribution of this paper is in verifying that theoretical
approximation can be obtained with a continuous time flow for monotone games set
in dual Banach spaces.

This paper is organized as follows. In section 2, we will recall some basic facts
about Gaussian measures. Next, we will discuss general N -player games in section 3
and prove Theorem 1.1. Then in section 4, we will show how to approximate equilibria
in symmetric and static mean field games provided that the appropriate monotonicity
hypothesis is in place. In the appendix, we will show how our general theory reduces
to the type of game discussed at the beginning of this introduction and work out an
explicit example to illustrate why we can't expect to have better than convergence in
the sense of the Ces\`aro mean.
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2756 RYAN HYND

2. Preliminaries. As in the introduction, we will suppose X is a separable Ba-
nach space over \BbbR with norm \| \cdot \| and denote the space of continuous linear functionals
\mu :X \rightarrow \BbbR as X\ast . We will also express the dual norm as

\| \mu \| \ast = sup\{ | \mu (x)| : \| x\| \leq 1\} .

Note that since X is separable, the weak* topology on X\ast is metrizable. In particular,
\mu k \rightarrow \mu weak* whenever \mu k(x)\rightarrow \mu (x) for all x \in X. It will also be important for us
to recall that the closed unit ball \{ \mu \in X\ast : \| \mu \| \ast \leq 1\} is weak* compact by Alaoglu's
theorem. That is, dual norm bounded sequences have weak* convergent subsequences.

2.1. Gaussian measures. We will assume throughout that \eta is a centered,
nondegenerate Gaussian measure on X. Namely, for each \mu \in X\ast \setminus \{ 0\} , there is q > 0
such that

(2.1)

\int 
X

g(\mu (x))d\eta (x) =

\int 
\BbbR 
g(y)

e - 
y2

2q

\surd 
2\pi q

dy

for all bounded and continuous g :\BbbR \rightarrow \BbbR . Below we will recall some basic properties
of Gaussian measures for the purposes of this paper, which can be found in [4, 16, 23].

We'll write (\mu ,\nu ) for the inner product between \mu and \nu in L2(X,\eta ) and

\| \mu \| L2 = (\mu ,\mu )1/2.

It is known that \eta has a finite second moment\int 
X

\| x\| 2d\eta (x)<\infty .

Note that if \mu \in X\ast and x\in X, | \mu (x)| \leq \| \mu \| \ast \| x\| . It follows that

\| \mu \| L2 \leq \| \mu \| \ast 
\biggl( \int 

X

\| x\| 2d\eta (x)
\biggr) 1/2

.

Therefore, X\ast \subset L2(X,\eta ).
As in the introduction, we denote H as the closure of X\ast in the L2(X,\eta ) norm.

We can think of H as linear functionals on X which are merely square integrable with
respect to \eta . With this choice of Hilbert space H,

X\ast \subset H

is a dense subspace. Moreover, this embedding is compact.
It is evident from (2.1) that (\mu ,\mu ) > 0 for each \mu \in X\ast \setminus \{ 0\} . Therefore, if

\mu 1, \mu 2 \in X\ast are equal to \eta almost everywhere, they must agree everywhere on X. The
following lemma is a consequence of this observation.

Lemma 2.1. Suppose (\mu k)k\in \BbbN is a bounded sequence in X\ast which converges weakly
in H to \xi . Then (\mu k)k\in \BbbN converges weak*, and its limit agrees \eta almost everywhere
with \xi .

Proof. Choose a subsequence (\mu kj )j\in \BbbN which converges weak* to some \mu \in X\ast .
Note that for a given \zeta \in H,

| \mu k(x)\zeta (x)| \leq c\| x\| | \zeta (x)| 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EVOLUTION OF MIXED STRATEGIES IN MONOTONE GAMES 2757

for some c independent of k \in \BbbN and x \in X. Observe that the right-hand side above
is in L1(X,\eta ). Dominated convergence implies

lim
j\rightarrow \infty 

\int 
X

\mu kj (x)\zeta (x)d\eta (x) =

\int 
X

\mu (x)\zeta (x)d\eta (x).

It follows that (\mu kj )j\in \BbbN converges weakly to \mu in H. As a result, \mu = \xi almost
everywhere. If (\mu k)k\in \BbbN has another weak* subsequential limit \~\mu , then \mu (x) = \~\mu (x)
for \eta almost x \in X. Therefore, \mu \equiv \~\mu and (\mu k)k\in \BbbN converges to \mu since this limit is
independent of the subsequence.

2.2. The mapping \bfscrJ . We now consider the linear mapping \scrJ :H \rightarrow X defined
by the formula

(2.2) \scrJ \xi =

\int 
X

x\xi (x)d\eta (x).

Observe that this Bochner integral is a well-defined element of X. Indeed, since \xi 
is the L2(X,\eta ) limit of a sequence of continuous functions and since X is separable,
the mapping x \mapsto \rightarrow x\xi (x) from X into X is strongly measurable; this can be seen as a
consequence of Pettis's theorem (Chapter V section 4 of [44]). Moreover, x \mapsto \rightarrow \| x\xi (x)\| 
is clearly in L1(X,\mu ).

A basic assertion regarding \scrJ is as follows.

Proposition 2.2. (i) For \mu \in X\ast and \xi \in H,

(2.3) \langle \mu ,\scrJ \xi \rangle = (\mu , \xi ).

(ii) \scrJ :H \rightarrow X is continuous and injective.

Proof. (i) As \scrJ \xi is the Bochner integral (2.2),

\langle \mu ,\scrJ \xi \rangle =
\biggl\langle 
\mu ,

\int 
X

x\xi (x)d\eta (x)

\biggr\rangle 
=

\int 
X

\mu (x)\xi (x)d\eta (x).

(ii) Since

\| \scrJ \xi \| \leq 
\biggl( \int 

X

\| x\| 2d\eta (x)
\biggr) 1/2

\| \xi \| L2

for \xi \in H, \scrJ is bounded. And if \scrJ \xi = 0 \in X, then (\mu , \xi ) = 0 for each \mu \in X\ast . Since
X\ast is dense in H, (\mu , \xi ) = 0 for each \mu \in H. That is, \xi = 0\in H.

2.3. An initial value problem. We will now briefly recall a few technical
assertions needed to proved Theorem 1.1. For simplicity, we will state these claims
for the Hilbert space H we introduced above; however, they are valid for any Hilbert
space. A mapping B :H \rightarrow 2H is monotone provided

(\xi  - \zeta ,\mu  - \nu )\geq 0

for each \xi \in B\mu and \zeta \in B\nu . Moreover, we will say that B is maximally monotone if
the only monotone C : H \rightarrow 2H with B\mu \subset C\mu for all \mu is B itself. Minty's lemma
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2758 RYAN HYND

[33] asserts that B is maximally monotone if and only if for each \sigma \in H, there is \mu for
which

\sigma \in \mu +B\mu .

The following theorem is a consequence of the seminal works by Kato [27, 28] and
K\=omura [29]. We also note that a more general statement is proved in Theorem 3.1
of the monograph by Br\'ezis [6].

Theorem 2.3 (Kato--K\=omura theorem). Assume that B is maximally monotone
with B\zeta 0 \not = \emptyset . There exists a unique Lipschitz continuous \zeta : [0,\infty ) \rightarrow H which
satisfies

(2.4)

\Biggl\{ 
\.\zeta (t) +B\zeta (t)\ni 0 for a.e. t\geq 0,

\zeta (0) = \zeta 0

and B\zeta (t) \not = \emptyset for all t\geq 0.

Any \mu \in H for which 0\in B\mu is an equilibrium for B. It turns out that a solution
of the initial value problem can be used to approximate equilibria of B provided of
course that B has equilibria. The subsequent theorem was proved by Baillon and
Br\'ezis [2].

Theorem 2.4 (Baillon--Br\'ezis theorem). Suppose that B is maximally monotone,
B has an equilibrium, and \zeta is a solution of the initial value problem (2.4). The limit

lim
t\rightarrow \infty 

1

t

\int t

0

\zeta (s)ds

exists weakly in H and is an equilibrium for B.

3. \bfitN -player games. The primary goal of this section is to prove Theorem 1.1.
To this end, we will suppose K1, . . . ,KN are each nonempty, convex, and compact
subsets of X\ast and set K =K1 \times \cdot \cdot \cdot \times KN . In addition, we will assume Fj :K \rightarrow \BbbR is
weak* continuous and that \nu j \mapsto \rightarrow Fj(\nu j , \mu  - j) is convex for each \mu \in K and j = 1, . . . ,N .

First let us recall that a Nash equilibrium exists.

Proposition 3.1. F1, . . . , FN has a Nash equilibrium.

Proof. By our assumptions, the mapping from K into 2K

K \ni \mu \mapsto \rightarrow argmin

\left\{   
N\sum 
j=1

Fj(\nu j , \mu  - j) : \nu \in K

\right\}   
has nonempty and convex images. Moreover, the graph of this mapping is closed. It
follows from the Kakutani--Fan--Glicksberg theorem that there is a fixed point

\mu \in argmin

\left\{   
N\sum 
j=1

Fj(\mu j , \nu  - j) : \nu \in K

\right\}   ,

which is also a Nash equilibrium of F1, . . . , FN .

Remark 3.2. Kakutani [25] extended Brouwer's fixed point theorem to set-valued
mappings. Fan [17] and Glicksberg [21] independently generalized Kakutani's fixed
point theorem [25] to locally convex spaces.
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EVOLUTION OF MIXED STRATEGIES IN MONOTONE GAMES 2759

3.1. Monotonicity of \bfitF 1, . . . , \bfitF \bfitN . Recall that F1, . . . ,FN is monotone pro-
vided (1.9) holds. There is also a simple sufficient condition for monotonicity as
detailed in the proposition below.

Proposition 3.3. Suppose, for each \mu ,\nu \in K,

(3.1)

N\sum 
j=1

(Fj(\mu ) + Fj(\nu ))\geq 
N\sum 
j=1

(Fj(\nu j , \mu  - j) + Fj(\mu j , \nu  - j)).

Then F1, . . . , FN is monotone.

Proof. Suppose xj \in \partial \mu jFj(\mu ) and yj \in \partial \mu jFj(\nu ). Then

Fj(\nu j , \mu  - j)\geq Fj(\mu ) + \langle \nu j  - \mu j , xj\rangle 

and

Fj(\mu j , \nu  - j)\geq Fj(\nu ) + \langle \mu j  - \nu j , yj\rangle 

for j = 1, . . . ,N . Adding these inequalities yields

N\sum 
j=1

(Fj(\nu j , \mu  - j) + Fj(\mu j , \nu  - j))\geq 
N\sum 
j=1

(Fj(\mu ) + Fj(\nu )) - 
N\sum 
j=1

\langle \mu j  - \nu j , xj  - yj\rangle .

Using (3.1) gives

N\sum 
j=1

\langle \mu j  - \nu j , xj  - yj\rangle \geq 0.

Corollary 3.4. If N = 2 and F1 + F2 \equiv 0, then F1, F2 is monotone. That is,
two-person zero-sum games are monotone.

Proof. For \mu ,\nu \in K,

2\sum 
j=1

(Fj(\mu ) + Fj(\nu )) =

2\sum 
j=1

Fj(\mu ) +

2\sum 
j=1

Fj(\nu ) = 0+ 0= 0,

and

2\sum 
j=1

(Fj(\nu j , \mu  - j) + Fj(\mu j , \nu  - j))

= (F1(\nu 1, \mu 2) + F1(\mu 1, \nu 2)) + (F2(\mu 1, \nu 2) + F2(\nu 1, \mu 2))

= (F1(\nu 1, \mu 2) + F2(\nu 1, \mu 2)) + (F1(\mu 1, \nu 2)) + F2(\mu 1, \nu 2))

= 0+ 0

= 0.

We also note that monotonicity can be verified somewhat more easily in the model
case.

Proposition 3.5. Suppose S is a compact metric space and fj : SN \rightarrow \BbbR is
continuous, and set

Fj(\mu 1, . . . , \mu N ) =

\int 
SN

fj(s)d\mu 1(s1) \cdot \cdot \cdot d\mu N (sN )
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2760 RYAN HYND

for \mu \in \scrP (S)N and j = 1, . . . ,N . Then F1, . . . , FN satisfies (3.1) if and only if

(3.2)

N\sum 
j=1

(fj(s) + fj(t))\geq 
N\sum 
j=1

(fj(sj , t - j) + fj(tj , s - j))

for all s, t\in SN .

Proof. Suppose (3.1) holds and s, t \in SN . If we select \mu j = \delta sj and \nu j = \delta tj
for j = 1, . . . ,N , then (3.1) is the same inequality as (3.2). Alternatively, suppose
(3.2) holds and \mu ,\nu \in \scrP (S)N . Integrating this inequality against d\mu j(sj)d\nu j(tj) for
j = 1, . . . ,N leads to (3.1).

3.2. Flow of mixed strategies. As previously mentioned, the closure of X\ast 

in L2(X,\eta ) is a Hilbert space H with inner product (\cdot , \cdot ). We also will employ the
linear mapping \scrJ : H \rightarrow X defined in (2.2) and suppose for the rest of this section
that F1, . . . , FN is monotone.

We will now consider the problem of finding a solution \xi : [0,\infty ) \rightarrow HN of the
initial value problem

(3.3)

\Biggl\{ 
\scrJ \.\xi j(t) + \partial \mu j

Fj(\xi (t))\ni 0 a.e. t\geq 0,

\xi j(0) = \mu 0
j

for a given \mu 0 \in K. Here HN is the N -fold product of H endowed with the inner
product

(\mu ,\nu ) :=

N\sum 
j=1

(\mu j , \nu j).

In order to verify the existence of a solution, we will define a mapping A :HN \rightarrow 2H
N

via

A\mu :=

\Biggl\{ 
\scrJ  - 1 (\partial \mu 1

F1(\mu ))\times \cdot \cdot \cdot \times \scrJ  - 1 (\partial \mu N
FN (\mu )) , \mu \in \scrD ,

\emptyset , \mu \not \in \scrD ,

for \mu \in HN . Here we recall that \scrD is defined in (1.12) and emphasize that \sigma \in A\mu if
and only if \mu \in K and \scrJ \sigma j \in \partial \mu j

Fj(\mu ) for j = 1, . . . ,N .
We will first show that A is maximally monotone.

Lemma 3.6. A is maximally monotone.

Proof. Suppose \sigma \in A\mu and \~\sigma \in A\~\mu . Then

(\mu  - \~\mu ,\sigma  - \~\sigma ) =

N\sum 
j=1

(\mu j  - \~\mu j , \sigma j  - \~\sigma j) =

N\sum 
j=1

\langle \mu j  - \~\mu j ,\scrJ \sigma j  - \scrJ \~\sigma j\rangle \geq 0

as F1, . . . , FN is monotone. Thus, A is monotone.
In order to show that A is maximal, we will appeal to Minty's lemma. That is,

it suffices to show for each \sigma \in HN that there is \mu \in K with \mu +A\mu \ni \sigma . This is the
case provided

\scrJ (\mu j  - \sigma j) + \partial \mu j
Fj(\mu )\ni 0
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EVOLUTION OF MIXED STRATEGIES IN MONOTONE GAMES 2761

for j = 1, . . . ,N . Furthermore, \mu is the desired solution if and only if \mu \in \Phi (\mu ), where
\Phi :K \mapsto \rightarrow 2K is defined as

\Phi (\mu ) := argmin

\left\{   
N\sum 
j=1

\langle \nu j ,\scrJ (\mu j  - \sigma j)\rangle + Fj(\nu j , \mu  - j) : \nu \in K

\right\}   
for each \mu \in K.

Note that

K \ni \nu \mapsto \rightarrow 
N\sum 
j=1

\langle \nu j ,\scrJ (\mu j  - \sigma j)\rangle + Fj(\nu j , \mu  - j)

is weak* continuous for each \mu \in K. Since K is weak* compact, this function has a
minimum. And as this function is convex, its set of minima is convex. Thus, \Phi (\mu )
is nonempty and convex. The continuity of F1, . . . , FN and of \scrJ also implies that
the graph of \Phi is closed. Therefore, there is \mu \in K such that \mu \in \Phi (\mu ) by the
Kakutani--Fan--Glicksberg theorem [17, 21].

We can now verify that the initial value problem (3.3) has a solution whose Ces\`aro
mean converges to a Nash equilibrium.

Proof of Theorem 1.1. We've established that A is maximally monotone, and our
hypothesis on \mu 0 is that A\mu 0 \not = \emptyset . The Kato--K\=omura theorem then implies that there
is a unique Lipschitz continuous solution \xi : [0,\infty )\rightarrow HN of the equation\Biggl\{ 

\.\xi (t) +A\xi (t)\ni 0 a.e. t\geq 0,

\xi (0) = \mu 0.

Moreover, A\xi (t) \not = \emptyset for each t\geq 0. It follows that \xi (t)\in \scrD for t\geq 0 and that

\scrJ \.\xi j(t) + \partial \mu jFj(\xi (t))\ni 0 a.e. t\geq 0,

for j = 1, . . . ,N . Consequently, \xi is a solution of the initial value problem (3.3) as
claimed. The limit

\mu j := lim
t\rightarrow \infty 

1

t

\int t

0

\xi j(s)ds

exists weakly in H by the Baillon--Br\'ezis theorem for each j = 1, . . . ,N and is an
equilibrium of A. Therefore, \mu is a Nash equilibrium of F1, . . . , FN . By Lemma 2.1,
this limit also exists weak*.

4. Symmetric games. Suppose now that K = K1 = \cdot \cdot \cdot = KN \subset X\ast is weak*
compact, F1, . . . , FN :KN \rightarrow \BbbR is continuous, and K \ni \nu j \mapsto \rightarrow Fj(\nu j , \mu  - j) is convex for
each \mu \in KN and j = 1, . . . ,N . We will say that F1, . . . , FN is symmetric provided

Fi(\mu , . . . , \mu , \nu ,\mu , . . . , \mu )\underbrace{}  \underbrace{}  
\nu \mathrm{i}\mathrm{s} \mathrm{i}\mathrm{n} \mathrm{t}\mathrm{h}\mathrm{e} i\mathrm{t}\mathrm{h} \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t} \mathrm{o}\mathrm{f} Fi

= Fj(\mu , . . . , \mu , \nu ,\mu , . . . , \mu )\underbrace{}  \underbrace{}  
\nu \mathrm{i}\mathrm{s} \mathrm{i}\mathrm{n} \mathrm{t}\mathrm{h}\mathrm{e} j\mathrm{t}\mathrm{h} \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t} \mathrm{o}\mathrm{f} Fj

for all i, j = 1, . . . ,N and all \mu ,\nu \in K. With these assumptions, it can be shown that
F1, . . . , FN has a symmetric Nash equilibrium (\mu , . . . , \mu ) \in KN . As we only need to
find \mu \in K such that

F1(\mu , . . . , \mu )\leq F1(\nu ,\mu , . . . , \mu ) for all \mu \in K,
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2762 RYAN HYND

we can employ a simpler approximation method than discussed above.
The theorem we present below will also apply to mean field equilibria, which we

recall are \mu \in \scrP (S) that satisfy\int 
S

f(s,\mu )d\mu (s)\leq 
\int 
S

f(s,\mu )d\nu (s)

for each \nu \in \scrP (S). For static mean field games, we'll always assume S is a compact
metric space and f : S \times \scrP (S)\rightarrow \BbbR is continuous; here S \times \scrP (S) is endowed with the
product topology from the metric on S and the weak* topology on \scrP (S). The key
monotonicity condition that will be needed is

(4.1)

\int 
S

(f(s,\mu ) - f(s, \nu ))d(\mu  - \nu )(s)\geq 0

for \mu ,\nu \in \scrP (S). This condition was introduced by Lasry and Lions in their seminal
work on mean field games as a way to establish uniqueness of mean field equilibria
[32]. In particular, if (4.1) holds strictly for \mu \not = \nu , there can be at most one mean
field equilibrium.

In order to address both scenarios, we will consider a weak* continuous G :K \times 
K \rightarrow \BbbR such that

K \ni \nu \mapsto \rightarrow G(\mu ,\nu ) is convex for each \mu \in K.

We'll also say \mu \in K is an equilibrium for G provided

G(\mu ,\mu )\leq G(\mu ,\nu )

for all \nu \in K. Moreover, \mu is an equilibrium if and only if 0\in \partial \nu G(\mu ,\mu ). Here

\partial \nu G(\mu ,\mu ) = \{ x\in X :G(\mu ,\nu )\geq G(\mu ,\mu ) + \langle \nu  - \mu ,x\rangle for \nu \in K\} .

One checks that an equilibrium for G is a fixed point of the mapping from K into
2K given by

K \ni \sigma \mapsto \rightarrow argmin\{ G(\sigma , \nu ) : \nu \in K\} .

Furthermore, the proof Proposition 3.1 can be adapted to conclude that an equilibrium
exists. We leave the details to the reader.

4.1. Monotonicity of \bfitG . We will say that G is monotone provided

\langle \mu  - \nu ,x - y\rangle \geq 0

whenever x \in \partial \nu G(\mu ,\mu ) and y \in \partial \nu G(\nu , \nu ). As in the case of N -player games, it
sometimes is useful to identify a simple sufficient condition for monotonicity. The
following lemma can be justified similarly to Proposition 3.3.

Lemma 4.1. Suppose

G(\mu ,\mu ) +G(\nu , \nu )\geq G(\mu ,\nu ) +G(\nu ,\mu )

for all \mu ,\nu \in K. Then G is monotone.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

6/
23

 to
 6

8.
82

.5
4.

57
 b

y 
R

ya
n 

H
yn

d 
(r

hy
nd

@
m

at
h.

up
en

n.
ed

u)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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Example 4.2. One of the model cases occurs when F1, . . . , FN is symmetric. Here
the relevant G function is

G(\mu ,\nu ) = F1(\nu ,\mu , . . . , \mu )

for \mu ,\nu \in K. We note that if the collection F1, . . . , FN is additionally monotone, then
G is monotone. Using Lemma 4.1, it is also possible to show that a sufficient condition
for the monotonicity of G is

F1(\mu , . . . , \mu ) + F1(\nu , . . . , \nu )\geq F1(\nu ,\mu , . . . , \mu ) + F1(\mu ,\nu , . . . , \nu )

for \mu ,\nu \in K.

Example 4.3. Let us also briefly consider the case of a static mean field game
f : S \times \scrP (S)\rightarrow \BbbR . Here

G(\mu ,\nu ) =

\int 
S

f(s,\mu )d\nu (s) (\mu ,\nu \in \scrP (S))

is monotone provided (4.1) holds. One example is f(s,\mu ) = \varphi (s) for a continuous
\varphi : S \rightarrow \BbbR . Another example is

f(s,\mu ) =

\int 
S

k(s, t)d\mu (t)

for a continuous, symmetric, and nonnegative definite kernel k : S \times S \rightarrow \BbbR . That is,
for any s1, . . . , sN \in S and c1, . . . , cN \in \BbbR ,

N\sum 
i,j=1

k(si, sj)cicj \geq 0.

It is easy to check that these assumptions imply that f satisfies (4.1).

4.2. Another flow of mixed strategies. For the remainder of this section, we
will suppose G is monotone. We will show how to approximate an equilibrium for G.
For a given \mu 0 \in K, we consider the following initial value problem: find an absolutely
continuous \zeta : [0,\infty )\rightarrow H such that

(4.2)

\Biggl\{ 
\scrJ \.\zeta (t) + \partial \nu G(\zeta (t), \zeta (t))\ni 0 a.e. t\geq 0,

\zeta (0) = \mu 0.

In order to establish the existence of a solution, we will introduce the operator
B :H \rightarrow 2H defined by

B\mu :=

\Biggl\{ 
\scrJ  - 1 (\partial \nu G(\mu ,\mu )) , \mu \in \scrC ,
\emptyset , \mu \not \in \scrC .

Here

\scrC =
\Bigl\{ 
\mu \in K : there is \sigma \in H with \scrJ \sigma \in \partial \nu G(\mu ,\mu )

\Bigr\} 
.

We note that \sigma \in B\mu if and only if \mu \in K and \scrJ \sigma \in \partial \nu G(\mu ,\mu ).
We can apply Minty's lemma and the Kakutani--Fan--Glicksberg theorem as we

did in Lemma 3.6 to conclude that B is maximally monotone. Furthermore, we
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2764 RYAN HYND

can apply The Kato--K\=omura and Baillon--Br\'ezis theorems to establish the following
theorem as we did in our proof of Theorem 1.1. Again, we leave the details to the
reader.

Theorem 4.4. Suppose \mu 0 \in \scrC . There is a unique Lipschitz continuous \zeta :
[0,\infty )\rightarrow H with \zeta (t)\in \scrC for all t\geq 0 that satisfies (4.2). Furthermore,

1

t

\int t

0

\zeta (s)ds

converges weak* to an equilibrium of G as t\rightarrow \infty .

Example 4.5. Suppose F1, . . . , FN is monotone and symmetric. In order to ap-
proximate a symmetric Nash equilibrium, we can use a solution \zeta : [0,\infty )\rightarrow H of\Biggl\{ 

\scrJ \.\zeta (t) + \partial \mu 1F1(\zeta (t), . . . , \zeta (t))\ni 0 a.e. t\geq 0,

\zeta (0) = \mu 0.

According to Theorem 4.4, there is a solution whose Ces\`aro mean converges weak* to
a symmetric Nash equilibrium \mu provided that

\scrJ \sigma \in \partial \mu 1
F1(\mu 

0, . . . , \mu 0)

for some \sigma \in H.

Example 4.6. Let us consider a static mean field game f : S\times \scrP (S)\rightarrow \BbbR such that
(4.1) holds. By Theorem 4.4, there is a Lipschitz path \zeta : [0,\infty )\rightarrow H which satisfies\left\{   

\int 
S

\Bigl( 
\scrJ \.\zeta (t) + f(\cdot , \zeta (t))

\Bigr) 
d(\nu  - \zeta (t))\geq 0 for a.e. t\geq 0 and all \nu \in \scrP (S),

\zeta (0) = \mu 0,

and \zeta (t) \in \scrP (S) for all t \geq 0 provided that there is \sigma \in H with \scrJ \sigma \in \partial \nu G(\mu 0, \mu 0).
That is, \int 

S

( - \scrJ \sigma + f(\cdot , \mu 0)) d(\nu  - \mu 0)\geq 0 for all \nu \in \scrP (S).

Moreover, the Ces\`aro mean of \zeta converges weak* to a mean field equilibrium as t\rightarrow \infty .

5. Summary. Nash equilibria in N -player noncooperative games have proved
to be quite difficult to approximate. In this note, we proposed a continuous time
method to approximate these points under the hypothesis that the game is monotone.
Our method involves a continuous flow in the space of mixed strategies and applies
to games in which mixed strategies are selected from a dual Banach space. The
prototypical space of mixed strategies is the collection of probability measures on a
compact metric space.

Our method has two key theoretical components. First, we used a Gaussian mea-
sure to embed our space of mixed strategies into a Hilbert space. Then we employed
the monotonicity of the game to apply existence and convergence results from theory
of semigroups generated by a maximally monotone operator on a Hilbert space. Our
main result is that for appropriately chosen initial conditions, the Ces\`aro mean of
solutions to our flow will converge to a Nash equilibrium. In addition, we showed how
our results extend to equilibria in symmetric N -player games in the limit as N \rightarrow \infty .
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EVOLUTION OF MIXED STRATEGIES IN MONOTONE GAMES 2765

The Gaussian measure we utilized is a reference measure which is fixed throughout
this work. It would be really interesting to deduce whether or not we can choose this
measure to influence the approximation method. It would also be of interest to further
develop and apply these ideas to approximate other types of equilibria in game theory
such as those which arise in the theory of mean field games.

Appendix A. Finite action sets. We will consider a particular Gaussian
measure on X =C(S) with

S = \{ s1, . . . , sm\} .

These considerations will be used to show how our general theory applies to games
with finite action sets. In particular, we will informally argue below that the abstract
flows considered in this paper reduce to much simpler flows on finite dimensional
spaces.

To this end, it will be convenient to define e1, . . . , em : S \rightarrow \BbbR via

ej(si) = \delta ij for i, j = 1, . . . ,m.

This allows us to represent each f \in C(S) and \mu \in M(S) as

f =

m\sum 
j=1

f(sj)ej and \mu =

m\sum 
j=1

\mu (ej)\delta sj .

These representations can be used to verify that C(S) is isometrically isomorphic
to \BbbR m endowed with the \infty -norm and that M(S) is isometrically isomorphic to \BbbR m

endowed with the 1-norm. It is also plain to see that \mu \in \scrP (S) if and only if

(\mu (e1), . . . , \mu (em))\in \Delta m.

We will consider the Borel probability measure \gamma on C(S) defined as

\int 
C(S)

hd\gamma =

\int 
\BbbR m

h

\left(  m\sum 
j=1

xjej

\right)  1

(2\pi )m/2
e - 

1
2 | x| 

2

dx

for continuous and bounded h :C(S)\rightarrow \BbbR .

Proposition A.1. \gamma is a Gaussian measure. Moreover,

(A.1) (\mu ,\nu ) =

m\sum 
j=1

\mu (ej)\nu (ej)

for \mu ,\nu \in M(S), and

(A.2) \scrJ \nu =

m\sum 
j=1

\nu (ej)ej

for \nu \in M(S).
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Proof. Suppose g : \BbbR \rightarrow \BbbR is bounded and continuous and c = (c1, . . . , cm) \in 
\BbbR m \setminus \{ 0\} . Observe that\int 

C(S)

g

\left(  m\sum 
j=1

cj\delta sj

\right)  d\gamma =

\int 
\BbbR m

g

\left(  m\sum 
j=1

cjxj

\right)  1

(2\pi )m/2
e - 

1
2 | x| 

2

dx

=

\int 
\BbbR m

g (c \cdot x) 1

(2\pi )m/2
e - 

1
2 | x| 

2

dx

=

\int 
\BbbR m

g (| c| x1)
1

(2\pi )m/2
e - 

1
2 | x| 

2

dx

=

\int 
\BbbR 
g (| c| x1)

1

(2\pi )1/2
e - 

1
2x

2
1dx1

=

\int 
\BbbR 
g (y)

1

(2\pi )1/2| c| 
e
 - 1

2| c| 2
y2

dy.

Thus, \gamma is a Gaussian measure. Also note that

(\mu ,\nu ) =

m\sum 
i,j=1

\mu (ei)\nu (ej)

\int 
C(S)

\delta si\delta sjd\gamma 

=

m\sum 
i,j=1

\mu (ei)\nu (ej)

\int 
\BbbR m

xixj
e - 

1
2 | x| 

2

(2\pi )m/2
dx

=

m\sum 
i,j=1

\mu (ei)\nu (ej)\delta ij

=

m\sum 
j=1

\mu (ej)\nu (ej).

This verifies (A.1). Formula (A.2) follows from (A.1) and the identity (2.3).

Finite action spaces for \bfitN -player games. Suppose Fj : \scrP (S)N \rightarrow \BbbR is
continuous and that \nu j \mapsto \rightarrow Fj(\nu j , \mu  - j) is convex for each \mu \in \scrP (S)N and j = 1, . . . ,N .
We wish to express the system

(A.3) \scrJ \.\xi j(t) + \partial \mu jFj(\xi (t))\ni 0

(j = 1, . . . ,N) more concretely. With this goal in mind, we set

gj(x1, . . . , xN ) := Fj

\Biggl( 
m\sum 

k=1

x1,k\delta sk , . . . ,

m\sum 
k=1

xN,k\delta sk

\Biggr) 
for xi = (xi,1, . . . , xi,m) \in \Delta m and i = 1, . . . ,N . We note that gj is continuous and
that yj \mapsto \rightarrow gj(yj , x - j) is convex for each x\in \Delta N

m and j = 1, . . . ,N .
It is not hard to see that if \mu i =

\sum m
k=1 xi,k\delta sk for xi \in \Delta m and i= 1, . . . ,N , then

N\sum 
k=1

zj,kek \in \partial \mu j
Fj(\mu ) if and only if zj \in \partial xj

gj(x).

It follows that the system (A.3) is equivalent to

\.uj(t) + \partial xj
gj(u(t))\ni 0
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EVOLUTION OF MIXED STRATEGIES IN MONOTONE GAMES 2767

(j = 1, . . . ,N) for u : [0,\infty )\rightarrow \Delta N
m. That is,

\xi j(t) =

m\sum 
k=1

uj,k(t)\delta sk

would solve (A.3) and vice versa. We finally note that the collection F1, . . . , FN is
monotone if and only if

N\sum 
j=1

(xj  - yj) \cdot (zj  - wj)\geq 0

whenever zj \in \partial xj
gj(x) and wj \in \partial xj

gj(y) for j = 1, . . . ,N .
Finite action spaces in static mean field games. If f : S \times \scrP (S) \rightarrow \BbbR is

continuous, then

gj(x) := f

\Biggl( 
sj ,

m\sum 
i=1

xi\delta si

\Biggr) 
(x\in \Delta m)

is continuous for each j = 1, . . . ,m. We aim to reinterpret the condition

(A.4)

\int 
S

\Bigl( 
\scrJ \.\zeta (t) + f(\cdot , \zeta (t))

\Bigr) 
d(\nu  - \zeta (t))\geq 0 for \nu \in \scrP (S)

in terms of g1, . . . , gm.
Observe that if

\nu =

m\sum 
j=1

yj\delta sj and \zeta (t) =

m\sum 
j=1

uj(t)\delta sj ,

then \int 
S

\Bigl( 
\scrJ \.\zeta (t) + f(\cdot , \zeta (t))

\Bigr) 
d(\nu  - \zeta (t)) =

m\sum 
j=1

( \.uj(t) + gj(u(t)))(yj  - uj(t))

= ( \.u(t) + g(u(t))) \cdot (y - u(t)).

Here we have written g= (g1, . . . , gm). As a result,

( \.u(t) + g(u(t))) \cdot (y - u(t))\geq 0 for y \in \Delta m.

In particular, this evolution is equivalent to (A.4). Finally, we note that f is monotone
in the sense of (4.1) if and only if

(g(x) - g(y)) \cdot (x - y)\geq 0

for x, y \in \Delta m.

Appendix B. An explicit example. We will work out an example which
suggests Ces\`aro mean convergence is the best one may expect from the type of flows
considered in this article. Let us assume that N = 2 and the cost functions are\Biggl\{ 

F1(x1, x2) = 3x1,1x2,1 + x1,2x2,1 + 4x1,2x2,2,

F2(x1, x2) = - 3x1,1x2,1  - x1,2x2,1  - 4x1,2x2,2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2768 RYAN HYND

for xi = (xi,1, xi,2) \in \Delta 2, for i = 1,2. Note this is a zero-sum game and \Delta 2 \subset \BbbR 2,
where \BbbR 2 is equipped with the standard dot product. It is not hard to check that the
unique Nash equilibrium for F1, F2 is the pair

((1/2,1/2), (2/3,1/3))\in \Delta 2
2.

Evolution inequalities. The corresponding flow (1.3) takes the form\biggl( 
\.u1,1(t) + 3u2,1(t)

\.u1,2(t) + u2,1(t) + 4u2,2(t)

\biggr) 
\cdot 
\biggl( 

z1,1  - u1,1(t)
z1,2  - u1,2(t)

\biggr) 
\geq 0

and \biggl( 
\.u2,1(t) - 3u1,1(t) - u1,2(t)

\.u2,2(t) - 4u1,2(t)

\biggr) 
\cdot 
\biggl( 

z2,1  - u2,1(t)
z2,2  - u2,2(t)

\biggr) 
\geq 0

for almost every t\geq 0 and each z1, z2 \in \Delta 2. The unknown is an absolutely continuous
path u : [0,\infty )\rightarrow \Delta 2

2, where u(t) = (u1(t), u2(t)).
If we put

v1(t) = u1,1(t), v2(t) = u2,1(t), w1 = z1,1, andw2 = z2,1,

we can re-express the above inequalities as\biggl( 
\.v1(t) + 3v2(t)

 - \.v1(t) + v2(t) + 4(1 - v2(t))

\biggr) 
\cdot 
\biggl( 

w1  - v1(t)
 - (w1  - v1(t))

\biggr) 
= (2 \.v1(t)+6v2(t) - 4)(w1 - v1(t))\geq 0

and\biggl( 
\.v2(t) - 3v1(t) - (1 - v1(t))

 - \.v2(t) - 4(1 - v1(t))

\biggr) 
\cdot 
\biggl( 

w2  - v2(t)
 - (w2  - v2(t))

\biggr) 
= (2 \.v2(t)+3 - 6v1(t))(w2  - v2(t))\geq 0.

Therefore, our initial value problem is equivalent to finding an absolutely continuous
pair v1, v2 : [0,\infty )\rightarrow [0,1] which satisfies

(B.1)

\Biggl\{ 
( \.v1(t) + 3v2(t) - 2)(w1  - v1(t))\geq 0,

( \.v2(t) + 3/2 - 3v1(t))(w2  - v2(t))\geq 0

for each w1,w2 \in [0,1] and given initial conditions

(B.2) v1(0) = v01 \in [0,1] and v2(0) = v02 \in [0,1].

Solution which parametrizes a circle. Observe that the solution of the system
of ODEs

\.v1(t) + 3v2(t) - 2 = 0 and \.v2(t) + 3/2 - 3v1(t) = 0

subject to the initial conditions (B.2) is

(B.3)

\Biggl\{ 
v1(t) = (v01  - 1/2) cos(3t) + (2/3 - v02) sin(3t) + 1/2,

v2(t) = (v02  - 2/3) cos(3t) + (v01  - 1/2) sin(3t) + 2/3.

In particular, this solution parametrizes the circle

(v1  - 1/2)2 + (v2  - 2/3)2 = (v01  - 1/2)2 + (v02  - 2/3)2
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counterclockwise in the v1v2 plane. It is easily checked that if

(B.4) (v01  - 1/2)2 + (v02  - 2/3)2 \leq (1/3)2,

then v1(t), v2(t) \in [0,1] for all t\geq 0. In this case, the circular path (B.3) solves (B.1)
and (B.2).

Convergence. Observe that since the path (B.3) lies on a circle centered at
(1/2,2/3), it will not converge to the circle's center as t\rightarrow \infty . However, it's plain to
see that

lim
t\rightarrow \infty 

1

t

\int t

0

v1(s)ds=
1

2
and lim

t\rightarrow \infty 

1

t

\int t

0

v2(s)ds=
2

3
.

As a result, when (B.4) holds, the solution of (B.1) does not converge to the Nash
equilibrium of F1, F2, but its Ces\`aro mean does.
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